Informations supplémentaires issues du web sur ce livre

Les informations affichées ci-dessous sont récupérées par une recherche par ISBN sur google Books API

Titre : Apprentissage statistique

Auteurs : Gérard Dreyfus

Description : L'apprentissage statistique permet la mise au point de modèles de données et de processus lorsque la formalisation de règles explicites serait impossible: reconnaissance de formes ou de signaux, prévision, fouille de données, prise de décision en environnement complexe et évolutif. Ses applications sont multiples dans le monde de la production industrielle (robotique, maintenance préventive, développement de capteurs virtuels, planification d'expériences, aide à la conception de produits), dans le domaine de la biologie et de la santé (aide au diagnostic, aide à la découverte de médicaments, bio-informatique), en télécommunications, en marketing et finance, et dans bien d'autres domaines. Sans omettre de rappeler les fondements théoriques de l'apprentissage statistique, cet ouvrage offre de solides bases méthodologiques à tout ingénieur ou chercheur soucieux d'exploiter ses données. Il en présente les algorithmes les plus couramment utilisés - réseaux de neurones, cartes topologiques, machines à vecteurs supports, modèles de Markov cachés - à l'aide d'exemples et d'études de cas industriels, financiers ou bancaires. Cet ouvrage est la mise à jour du livre Réseaux de neurones - Méthodologie et applications. A qui s'adresse ce livre ? Aux ingénieurs, chercheurs et décideurs ayant à résoudre des problèmes de modélisation, de reconnaissance, de prévision, de commande, etc. Aux étudiants et élèves ingénieurs des disciplines scientifiques et économiques, et à leurs enseignants.

Nombre de pages : 449

Type : BOOK

Langue : fr

Editeur : Editions Eyrolles

Date de publication : 2008

ISBN 10 : 9782212122299

ISBN 13 : 2212122292


Afficher le livre dans Google

Copyright © 2014 - ENSA Al-Hoceima | Tous droits réservés

Site crée par Tarik BOUDAA